જો $z$ અને $w$ એ બે સંકર સંખ્યા છે કે જેથી $w=z \bar{z}-2 z+2,\left|\frac{z+i}{z-3 i}\right|=1$ અને $\operatorname{Re}(w)$ ની કિમંત ન્યૂનતમ થાય છે . તો $n \in N$ ની ન્યૂનતમ કિમંત મેળવો કે જેથી $w ^{ n }$ એ વાસ્તવિક સંખ્યા થાય .

  • [JEE MAIN 2021]
  • A

    $5$

  • B

    $2$

  • C

    $4$

  • D

    $6$

Similar Questions

 જો $z_1 = 1+2i$ અને $z_2 = 3+5i$ , હોય તો ${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\overline Z }_2}{Z_1}}}{{{Z_2}}}} \right) = $

$z=\alpha+i \beta$ માટે જો $|z+2|=z+4(1+i)$ હોય, તો $\alpha+\beta$ અને $\alpha \beta$ એ $.........$ સમીકરણ ના બીજ છે.

  • [JEE MAIN 2023]

જો $z_1 = a + ib$ અને $z_2 = c + id$ એ બે સંકર સંખ્યાઓ છે કે જેથી $| z_1 | = | z_2 |=1$ અને  $R({z_1}\overline {{z_2}} ) = 0$, હોય તો સંકર સંખ્યાઓ $w_1 = a + ic$ અને  $w_2 = b + id$ માટે 

ધારોકે $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$.તો $\sum_{z \in S}|z|^2=........$

  • [JEE MAIN 2023]

સમીકરણ ${z^2} + \bar z = 0$ ના ઉકેલની સંખ્યા મેળવો.