ધારોકે $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$.તો $\sum_{z \in S}|z|^2=........$
$\frac{7}{2}$
$4$
$\frac{5}{2}$
$3$
જો $|z_1|=1, \, |z_2| =2, \,|z_3|=3$ અને $|9z_1z_2 + 4z_1z_3+z_2z_3| =12$ હોય તો $|z_1+z_2+z_3|$ ની કિમત મેળવો
જો $z$ એ સંકર સંખ્યા હોય તો $z$ અને $ - iz$ વચ્ચેનો ખૂણો મેળવો.
$ - 1 - i\sqrt 3 $ નો કોણાંક મેળવો.
જો $z_1 = 6 + i$ અને $z_2 = 4 -3i$ તથા સંકર સંખ્યા $z$ એવી મળે કે જેથી $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, થાય તો $z$ માટે
જો $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$ તો $arg\,(z)$ = . . ..