Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that

$(a, a) \in R$ for all $a \in Q$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since, $a-a=0 \in Z ,$ if follows that $(a, a) \in R$

Similar Questions

Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?

$(a, b) \in R ,(b, c) \in R$ implies $(a, c) \in R$

Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?

$(a, a) \in R ,$ for all $a \in N$

Let $A=\{1,2,3,4,6\} .$ Let $R$ be the relation on $A$ defined by $\{ (a,b):a,b \in A,b$ is exactly divisible by $a\} $

Find the range of $R$

Let $A=\{1,2,3, \ldots, 14\} .$ Define a relation $R$ from $A$ to $A$ by $R = \{ (x,y):3x - y = 0,$ where $x,y \in A\} .$ Write down its domain, codomain and range.

Write the relation $R = \{ \left( {x,{x^3}} \right):x$ is a prime number less than $10{\rm{\} }}$ in roster form.