$R$ એ $N$ થી $N$ નો સંબંધ છે. $R = \{ (a,b):a,b \in N$ અને $a = {b^2}\} $ થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે? જો $(a, b) \in R,$ તો $(b, a) \in R$ પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$
It can be seen that $(9,3)$ $\in N$ because $9,3 \in N$ and $9=3^{2} .$ Now, $3 \neq 9^{2}=81$ $(3,9)$ $\notin N$
Therefore, the statement $"(a, b) \in R,$ implies $"(b, a) \in R "$ is not true.
પ્રાકૃતિક સંખ્યાગણ પર સંબંધ $R$ એ $\{(a, b) : a - b = 3\}$ દ્વારા વ્યાખ્યાયિત હોય તો $R=$
$R=\{(x, y): y=x+5,$ $x$ એ $4$ થી નાની પ્રાકૃતિક સંખ્યા છે, $x, y \in N \}$ થાય તે રીતે એક સંબંધ $N$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો. $R$ નો પ્રદેશ તેમજ વિસ્તાર મેળવો.
$A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ અને $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ તો શું નીચેના વિધાનો સત્ય છે ? $f$ એ $A$ થી $B$ નો સંબંધ છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
આકૃતિમાં $P$ થી $Q$ નો સંબંધ દશાવેલ છે. આ સંબંધને ગુણધર્મની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે?
સંબંધ $R = \{ \left( {x,{x^3}} \right):x$ એ $10$ કરતાં નાની અવિભાજ્ય સંખ્યા છે $\} $ ને યાદીના સ્વરૂપમાં લખો.