Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?
$(a, b) \in R ,(b, c) \in R$ implies $(a, c) \in R$
$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$
It can be seen that $(9,3) \in R,(16,4) \in R$ because $9,3,16,4 \in N$ and $9=3^{2}$ and $16=4^{2}$
Now, $9 \neq 4^{2}=16 ;$ therefore, $(9,4)$ $\notin N$
Therefore, the statement $''(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R^{\prime \prime}$ is not true.
The Fig shows a relation between the sets $P$ and $Q$. Write this relation
in roster form
What is its domain and range ?
Let $A=\{1,2,3,4,5,6\} .$ Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$
Write down the domain, codomain and range of $R .$
Let $A=\{x, y, z\}$ and $B=\{1,2\} .$ Find the number of relations from $A$ to $B$.
Let $A=\{1,2,3,4,6\} .$ Let $R$ be the relation on $A$ defined by $\{ (a,b):a,b \in A,b$ is exactly divisible by $a\} $
Find the domain of $R$
Let $A=\{1,2,3,4,6\} .$ Let $R$ be the relation on $A$ defined by $\{ (a,b):a,b \in A,b$ is exactly divisible by $a\} $
Find the range of $R$