- Home
- Standard 11
- Mathematics
2.Relations and Functions
easy
$R =\left\{(a, b): a, b \in N \right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $N$ से $N$ में, एक संबंध $R$ है। क्या निम्नलिखित कथन सत्य हैं ?
$(a, b) \in R ,(b, c) \in R$ का तात्पर्य है कि $(a, c) \in R ?$
Option A
Option B
Option C
Option D
Solution
$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$
It can be seen that $(9,3) \in R,(16,4) \in R$ because $9,3,16,4 \in N$ and $9=3^{2}$ and $16=4^{2}$
Now, $9 \neq 4^{2}=16 ;$ therefore, $(9,4)$ $\notin N$
Therefore, the statement $''(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R^{\prime \prime}$ is not true.
Standard 11
Mathematics