$R =\left\{(a, b): a, b \in N \right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $N$ से $N$ में, एक संबंध $R$ है। क्या निम्नलिखित कथन सत्य हैं ?
$(a, b) \in R ,(b, c) \in R$ का तात्पर्य है कि $(a, c) \in R ?$
$R=\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\}$
It can be seen that $(9,3) \in R,(16,4) \in R$ because $9,3,16,4 \in N$ and $9=3^{2}$ and $16=4^{2}$
Now, $9 \neq 4^{2}=16 ;$ therefore, $(9,4)$ $\notin N$
Therefore, the statement $''(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R^{\prime \prime}$ is not true.
मान लीजिए कि $A =\{x, y, z\}$ और $B =\{1,2\}, A$ से $B$ के संबंधों की संख्या ज्ञात कीजिए।
$R =\left\{(a, b): a, b \in N \right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $N$ से $N$ में, एक संबंध $R$ है। क्या निम्नलिखित कथन सत्य हैं ?
$(a, a) \in R ,$ सभी $a \in N$
मान लीजिए कि $A =\{1,2,3,4\}, B =\{1,5,9,11,15,16\}$ और $f=\{(1,5),(2,9),(3,1),(4,5), (2,11)\}$. क्या निम्नलिखित कथन सत्य हैं ?
$f, A$ से $B$ में एक संबंध है।
प्रत्येक दशा में अपने उत्तर का औचित्य बतलाइए ।
मान लीजिए कि $A =\{1,2\}$ और $B =\{3,4\} . A$ से $B$ में संबंधों की संख्या ज्ञात कीजिए।
संबंध $R =\left\{\left(x, x^{3}\right): x\right.$ संख्या $10$ से कम एक अभाज्य संख्या है $\}$ को रोस्टर रूप में लिखिए।