- Home
- Standard 11
- Mathematics
Let $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ and $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ If mean and variance of elements of $Y$ are $17$ and $216$ respectively then $a + b$ is equal to
$-7$
$7$
$9$
$-27$
Solution
$\sigma^{2}=$ variance
$\mu=$ mean
$\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}$
$\mu=17$
$\Rightarrow \frac{\sum_{x=1}^{17}(a x+b)}{17}=17$
$\Rightarrow \quad 9 a+b=17$
$\sigma^{2}=216$
$\Rightarrow \quad \frac{\sum_{x=1}^{17}(a x+b-17)^{2}}{17}=216$
$\Rightarrow \frac{\sum_{x=1}^{17} a^{2}(x-9)^{2}}{17}=216$
$\Rightarrow \quad a^{2} 81-18 \times 9 a^{2}+a^{2} 3 \times(35)=216$
$\Rightarrow \quad$ From $(1), b=-10$
So, $a+b=-7$
Similar Questions
Find the mean, variance and standard deviation using short-cut method
Height in cms | $70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
No. of children | $3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
What is the standard deviation of the following series
class | $0-10$ | $10-20$ | $20-30$ | $30-40$ |
Freq | $1$ | $3$ | $4$ | $2$ |