- Home
- Standard 11
- Mathematics
13.Statistics
medium
Find the mean and variance for the first $10$ multiples of $3$
Option A
Option B
Option C
Option D
Solution
The first $10$ multiples of $3$ are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar x = \frac{{\sum\limits_{i = 1}^{10} {{x_i}} }}{{10}} = \frac{{165}}{{10}} = 16.5$
The following table is obtained.
${x_i}$ | $\left( {{x_i} – \bar x} \right)$ | ${\left( {{x_i} – \bar x} \right)^2}$ |
$3$ | $-13.5$ | $182.25$ |
$6$ | $-10.5$ | $110.25$ |
$9$ | $-7.5$ | $56.25$ |
$12$ | $-4.5$ | $20.25$ |
$15$ | $-1.5$ | $2.25$ |
$18$ | $1.5$ | $2.25$ |
$21$ | $4.5$ | $20.25$ |
$24$ | $7.5$ | $56.25$ |
$27$ | $10.5$ | $110.25$ |
$30$ | $13.5$ | $182.25$ |
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_1} – \bar x} \right)}^2} = } \frac{1}{{10}} \times 742.5 = 74.25$
$742.5$
Standard 11
Mathematics
Similar Questions
If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
Find the mean and variance for the following frequency distribution.
Classes | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
Frequencies | $5$ | $8$ | $15$ | $16$ | $6$ |
hard