13.Statistics
hard

જો $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ અને $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ તથા $Y$ ના બધા ઘટકોનો મધ્યક અને વિચરણ અનુક્રમે $17$ અને $216$ હોય તો $a + b$ ની કિમત શોધો 

A

$-7$

B

$7$

C

$9$

D

$-27$

(JEE MAIN-2020)

Solution

$\sigma^{2}=$ variance

$\mu=$ mean

$\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}$

$\mu=17$

$\Rightarrow \frac{\sum_{x=1}^{17}(a x+b)}{17}=17$

$\Rightarrow \quad 9 a+b=17$

$\sigma^{2}=216$

$\Rightarrow \quad \frac{\sum_{x=1}^{17}(a x+b-17)^{2}}{17}=216$

$\Rightarrow \frac{\sum_{x=1}^{17} a^{2}(x-9)^{2}}{17}=216$

$\Rightarrow \quad a^{2} 81-18 \times 9 a^{2}+a^{2} 3 \times(35)=216$

$\Rightarrow \quad$ From $(1), b=-10$

So, $a+b=-7$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.