જો $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ અને $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ તથા $Y$ ના બધા ઘટકોનો મધ્યક અને વિચરણ અનુક્રમે $17$ અને $216$ હોય તો $a + b$ ની કિમત શોધો
$-7$
$7$
$9$
$-27$
એક વિદ્યાર્થીએ $100$ અવલોકનોનો મધ્યક $40$ અને પ્રમાણિત વિચલન $5.1$ મેળવ્યા છે, પરંતુ એણે ભૂલથી એક અવલોકન $40$ ને બદલે $50$ લઈ લીધું હતું, તો સાચો મધ્યક અને પ્રમાણિત વિચલન શું છે?
આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $9$ અને $9.25$ છે, જો આમાંથી છ અવલોકનો $6, 7, 10, 12, 12$ અને $13$ હોય, તો બાકીનાં બે અવલોકનો શોધો.
એક વર્ગમાં $60$ વિધ્યાર્થીઓ છે એક પરીક્ષામાં તેમણે મેળવેલ ગુણનું માહિતી વિતરણ આપેલ છે :
$\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Marks } & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \text { Frequency } & x-2 & x & x^{2} & (x+1)^{2} & 2 x & x+1 \\ \hline \end{array}$
જ્યાં $x$ એ ધન પૂર્ણાક સંખ્યા છે તો આ માહિતી માટે પ્રમાણિત વિચલન અને મધ્યક મેળવો
જો શ્રેણીમાં $2 n$ અવલોકન આપેલ છે જે પૈકી અડધા અવલોકનો $a$ અને બાકીના અવલોકનો $-a$ છે. અને જો અવલોકનોમાં અચળ $b$ ઉમેરવવામાં આવે તો માહિતીનો નવો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $5$ અને $20 $ થાય છે તો $a^{2}+b^{2}$ ની કિમંત મેળવો.
$10$ વિદ્યાર્થીઓના ગુણના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $12$ જોવામાં આવેલ છે.ત્યાર બાદ એવુ જોવામાં આવ્યું કે બે ગુણ $20$ અને $25$ ને ખોટી રીતે અનુક્રમે $45$ અને $50$ વાંચવામાં આવ્યા હતા. તો સાચું વિચરણ $......$ છે.