माना एक फलन $f : R \rightarrow R$ प्रत्येक $x , y \in R$ के लिए $f ( x + y )= f ( x )+ f ( y )$ को संतुष्ट करता है। यदि $f(1)=2$ तथा $g(n)=\sum_{ k =1}^{( n -1)} f ( k ), n \in N$ है, तो $n$ का वह मान जिसके लिए $g ( n )=20$ हैं

  • [JEE MAIN 2020]
  • A

    $5$

  • B

    $9$

  • C

    $20$

  • D

    $4$

Similar Questions

${2^x} + {2^y} = 2$ द्वारा परिभाषित फलन का डोमेन (प्रान्त) है

  • [IIT 2000]

फलन

$\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{[\mathrm{x}]^2-3[\mathrm{x}]-10}}$, (जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, का प्रांत है)

  • [JEE MAIN 2023]

यदि फलन $\mathrm{f}(\mathrm{x})=\sec ^{-1}\left(\frac{2 \mathrm{x}}{5 \mathrm{x}+3}\right)$ का प्रांत $[\alpha, \beta) \cup(\gamma, \delta]$ है, तो $|3 \alpha+10(\beta+\gamma)+21 \delta|$ बराबर है_________|

  • [JEE MAIN 2023]

फलन $f(x) = {\sin ^{ - 1}}5x$ का डोमेन (प्रान्त) है

माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है:

  • [JEE MAIN 2017]