1.Relation and Function
hard

વિધેય $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ માટે $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ થાય જો $\mathrm{f}(1)=2$ અને $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ હોય તો $n$ કિમત મેળવો જ્યાં $\mathrm{g}(\mathrm{n})=20$ થાય 

A

$5$

B

$9$

C

$20$

D

$4$

(JEE MAIN-2020)

Solution

$f(x+y)=f(x)+f(y)$

$\Rightarrow f(n)=n f(1)$

$f(n)=2 n$

$g(n)=\sum_{k=1}^{n-1} 2 n=2\left(\frac{(n-1) n}{2}\right)=n(n-1)$

$g(n)=20 \Rightarrow n(n-1)=20$

$n=5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.