વિધેય $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ માટે $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ થાય જો $\mathrm{f}(1)=2$ અને $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ હોય તો $n$ કિમત મેળવો જ્યાં $\mathrm{g}(\mathrm{n})=20$ થાય 

  • [JEE MAIN 2020]
  • A

    $5$

  • B

    $9$

  • C

    $20$

  • D

    $4$

Similar Questions

વિધેય $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ નો પ્રદેશ $\dots\dots$છે.

  • [JEE MAIN 2022]

વિધેય $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ નુ આવર્તમાન મેળવો, ( જ્યા $[.]$ એ મહત્તમ પુર્ણાક વિધેય છે.)

સાબિત કરો કે વિધેય $f: R \rightarrow R$, $f(x)=2 x$ એક-એક અને વ્યાપ્ત છે. 

વિધેય $f(x) = {x^{10}} + {x^2} + \frac{1}{{{x^{12}}}} + \frac{1}{{\left( {1\ +\ {{\sec }^{ - 1}}\ x} \right)}}$ ની ન્યુનતમ કિમત ........ છે. 

$f(x)$ અને $g(x)$ એ બે વિધેય માટે $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ અને $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right)$ છે. જો $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$ હોય તો $k$ ની કિમત ........... થાય.