माना $m$ तथा $M \left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\right|$ के, क्रमशः न्यूनतम तथा अधिकतम मान हैं, तो क्रमित युग्म $( m , M )$ बराबर है 

  • [JEE MAIN 2020]
  • A

    $(-3,-1)$

  • B

    $(-4,-1)$

  • C

    $(1,3)$

  • D

    $(-3,3)$

Similar Questions

$\lambda$ तथा $\mu$ के क्रमश: मान, जिनके लिए समीकरण निकाय $x+y+z=2$, $x+2 y+3 z=5$, $x+3 y+\lambda z=\mu$ के असंख्य हल हैं

  • [JEE MAIN 2020]

यदि $p + q + r = 0 = a + b + c$, तो सारणिक  $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ का मान है

$x$ के मान ज्ञात कीजिए यदि

$\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$

माना $\theta \in\left(0, \frac{\pi}{2}\right)$ है। यदि रैखिक समीकरण निकाय

$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$ का अतुच्छ हल है, तो, $\theta$ का मान है

  • [JEE MAIN 2021]

यदि $A =\left[\begin{array}{lcl}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$ हो, तो सही $\theta \in\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$ के लिये $\operatorname{det}( A )$ किस अन्तराल में स्थित होगा

  • [JEE MAIN 2019]