જો $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ હોય તો $a _{1}+ a _{3}+ a _{5}+\ldots+ a _{37}$ ની કિમંત મેળવો.
$2^{20}\left(2^{20}-21\right)$
$2^{19}\left(2^{20}-21\right)$
$2^{19}\left(2^{20}+21\right)$
$2^{20}\left(2^{20}+21\right)$
$n\left[ {x - \left( {\frac{{^n{C_0}{ + ^n}{C_1}}}{{^n{C_0}}}} \right)} \right]\left[ {\frac{x}{2} - \left( {\frac{{^n{C_1}{ + ^n}{C_2}}}{{^n{C_1}}}} \right)} \right]\left[ {\frac{x}{3} - \left( {\frac{{^n{C_2}{ + ^n}{C_3}}}{{^n{C_2}}}} \right)} \right].....$ $ \left[ {\frac{x}{n} - \left( {\frac{{^n{C_{n - 1}}{ + ^n}{C_n}}}{{^n{C_{n - 1}}}}} \right)} \right]$ ના વિસ્તરણમાં $x^{n-6}$ નો સહગુણક મેળવો
(જ્યાં $n = n . (n -1) . (n -2).... 3.2.1$)
$(2x + 1) (2x + 3) (2x + 5)----- (2x + 99)$ ના વિસ્તરણમાં $x^{49}$ નો સહગુણક મેળવો
જો $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ જ્યાં ગુ. સા. અ. $\operatorname(n, m)=1$,હોય,તો $n+m$ .....................
$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ ની કિમંત મેળવો.
ધારો કે $\alpha=\sum_{r=0}^n\left(4 r^2+2 r+1\right)^n C_r$ અને $\beta=\left(\sum_{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1} \cdot$ જો $140 < \frac{2 \alpha}{\beta}<281$ તો $n$ નું મૂલ્ય .......... છે.