$\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ ના વિસ્તરણમાં $x^9$ નો સહગુણક મેળવો
$5511$
$5151$
$1515$
$1155$
$n\left[ {x - \left( {\frac{{^n{C_0}{ + ^n}{C_1}}}{{^n{C_0}}}} \right)} \right]\left[ {\frac{x}{2} - \left( {\frac{{^n{C_1}{ + ^n}{C_2}}}{{^n{C_1}}}} \right)} \right]\left[ {\frac{x}{3} - \left( {\frac{{^n{C_2}{ + ^n}{C_3}}}{{^n{C_2}}}} \right)} \right].....$ $ \left[ {\frac{x}{n} - \left( {\frac{{^n{C_{n - 1}}{ + ^n}{C_n}}}{{^n{C_{n - 1}}}}} \right)} \right]$ ના વિસ્તરણમાં $x^{n-6}$ નો સહગુણક મેળવો
(જ્યાં $n = n . (n -1) . (n -2).... 3.2.1$)
જો ${(x - 2y + 3z)^n}$ ના સહગુણકોનો સરવાળો $128$ હોય તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ સહગુણક મેળવો.
${\left( {1 - x - {x^2} + {x^3}} \right)^6}$ નાં વિસ્તરણમાં $x^7$ નો સહગુણક મેળવો.
જો ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ તો ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $
$\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ ના વિસ્તરણમાં $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ ની વધતી ઘાતાંકમાં નવમું પદ જો $180$ હોય તો $^{\prime}x^{\prime}$ ની શકય કિમંત મેળવો.