${(x + a)^n}$ ના વિસ્તરણમાં , $P$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $Q$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો $({P^2} - {Q^2})$ = . . .. .
${({x^2} + {a^2})^n}$
${({x^2} - {a^2})^n}$
${(x - a)^{2n}}$
${(x + a)^{2n}}$
$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$
વિસ્તરણમાં $\alpha ^t$ નો સહગુણક મેળવો.
જ્યાં $\alpha \ne - q$ અને $p \ne q$
જો $\sum\limits_{r = 0}^{25} {\left\{ {^{50}{C_r}.{\,^{50 - r}}{C_{25 - r}}} \right\} = K\left( {^{50}{C_{25}}} \right)} $ હોય તો $K$ ની કિમત મેળવો.
પ્રાકૃતિક સંખ્યા $m,n$ માટે, ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$માટે $a_1= a_2=10,$ તો $(m,n)$ =______.
જો $C_r= ^{100}{C_r}$ , હોય તો $1.C^2_0 - 2.C^2_1 + 3.C^2_3 - 4.C^2_0 + 5.C^2_4 - .... + 101.C^2_{100}$ ની કિમત મેળવો
જો $\sum_{ k =1}^{10} K ^{2}\left(10_{ C _{ K }}\right)^{2}=22000 L$ હોય તો $L$ ની કિમંત $.....$ થાય.