$8^{th}$ term of the series $2\sqrt 2 + \sqrt 2 + 0 + .....$ will be
$ - 5\sqrt 2 $
$5\sqrt 2 $
$10\sqrt 2 $
$ - 10\sqrt 2 $
If ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, where ${S_n}$ denotes the sum of the first $n$ terms of an $A.P.$, then the common difference is
A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?
If ${m^{th}}$ terms of the series $63 + 65 + 67 + 69 + .........$ and $3 + 10 + 17 + 24 + ......$ be equal, then $m = $
If the ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ term of an arithmetic sequence are $a , b$ and $c$ respectively, then the value of $[a(q - r)$ + $b(r - p)$ $ + c(p - q)] = $
Let $a_n$ be a sequence such that $a_1 = 5$ and $a_{n+1} = a_n + (n -2)$ for all $n \in N$, then $a_{51}$ is