Gujarati
8. Sequences and Series
medium

If ${S_1},\;{S_2},\;{S_3},...........{S_m}$ are the sums of $n$ terms of $m$ $A.P.'s$ whose first terms are $1,\;2,\;3,\;...............,m$ and common differences are $1,\;3,\;5,\;...........2m - 1$ respectively, then ${S_1} + {S_2} + {S_3} + .......{S_m} = $

A

$\frac{1}{2}mn(mn + 1)$

B

$mn(m + 1)$

C

$\frac{1}{4}mn(mn - 1)$

D

None of the above

Solution

(a) Here $a = 1,\;2,\;3,\,……..,m;\;\;\;d = 1,\;3,\;5,……..,2m – 1$

and $n = n$, then ${S_1} + {S_2} + ……. + {S_m} = \frac{1}{2}mn(mn + 1)$

$\left[ {{\rm{Using}}\;S\; = \frac{m}{2}(a + l).\;{\rm{Since}}\;{S_1},\;{S_2},\;{S_3},……{S_m}\;{\rm{form}}\;{\rm{an}}\;{\rm{A}}{\rm{.P}}{\rm{.}}} \right]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.