Let ${ }^{n} C_{r}$ denote the binomial coefficient of $x^{r}$ in the expansion of $(1+ x )^{ n }.$

If $\sum_{ k =0}^{10}\left(2^{2}+3 k \right){ }^{ n } C _{ k }=\alpha .3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R$ then $\alpha+\beta$ is equal to ....... .

  • [JEE MAIN 2021]
  • A

    $19$

  • B

    $21$

  • C

    $17$

  • D

    $13$

Similar Questions

The coefficient of $x ^{101}$ in the expression $(5+x)^{500}+x(5+x)^{499}+x^{2}(5+x)^{498}+\ldots . x^{500}$ $x>0$, is

  • [JEE MAIN 2022]

If ${a_r}$ is the coefficient of ${x^r}$, in the expansion of ${(1 + x + {x^2})^n}$, then ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $

The value of $\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right)$

  • [IIT 2005]

The sum of last eight consecutive coefficients in the expansion of $(1+x)^{15}$ is

If $(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + x^3 + ...... + x^n)$

$\equiv  a_0 + a_1x + a_2x^2 + a_3x^3 + ...... + a_mx^m$ then $\sum\limits_{r\, = \,0}^m {\,\,{a_r}}$ has the value equal to