7.Binomial Theorem
hard

અહી ${ }^{n} C_{r}$ એ $(1+ x )^{ n }$ ના વિસ્તરણમાં $x^{r}$ નો સહગુણક દર્શાવે છે. જો $\sum_{ k =0}^{10}\left(2^{2}+3 k \right){ }^{ n } C _{ k }=\alpha .3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R$ તો $\alpha+\beta$ ની કિમંત મેળવો.

A

$19$

B

$21$

C

$17$

D

$13$

(JEE MAIN-2021)

Solution

Instead of ${ }^{n} C_{k}$ it must be ${ }^{10} C_{k}$ i.e.

$\sum_{k=0}^{10}\left(2^{2}+3 k\right){ }^{10} C _{ k }=\alpha .3^{10}+\beta .2^{10}$

$LHS =4 \sum_{ k =0}^{10}{ }^{10} C _{ k }+3 \sum_{ k =0}^{10} k \cdot \frac{10}{ k } \cdot{ }^{9} C _{ k -1}$

$=4.2^{10}+3.10 .2^{9}$

$=19.2^{10}=\alpha .3^{10}+\beta .2^{10}$

$\Rightarrow \alpha=0, \beta=19 \Rightarrow \alpha+\beta=19$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.