3 and 4 .Determinants and Matrices
hard

અહી $A=\left(\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right),$ કે જ્યાં $[t]$ એ મહતમ પૂર્ણાંક દર્શાવે છે . જો  $\operatorname{det}(\mathrm{A})=192$ આપેલ હોય તો $\mathrm{x}$ ની કિમંતો  . . . . અંતરાલમાં આવેલ છે.

A

$[68,69)$

B

$[62,63)$

C

$[65,66)$

D

$[60,61)$

(JEE MAIN-2021)

Solution

$\left|\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right|=192$

$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3} \;and\; \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$

$\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ {[x]} & {[x]+2} & {[x]+4}\end{array}\right]=192$

$2[x]+6+[x]=192 \Rightarrow[x]=62$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.