3 and 4 .Determinants and Matrices
hard

माना $A =\left(\begin{array}{ccc}{[ x +1]} & {[ x +2]} & {[ x +3]} \\ {[ x ]} & {[ x +3]} & {[ x +3]} \\ {[ x ]} & {[ x +2]} & {[ x +4]}\end{array}\right)$, जहाँ [t]महत्तम पूर्णांक $\leq t$ को दर्शाता है। यदि $\operatorname{det}( A )=192$ है, तो $x$ के मानों का समुच्चय निम्न में से कौन सा अन्तराल है?

A

$[68,69)$

B

$[62,63)$

C

$[65,66)$

D

$[60,61)$

(JEE MAIN-2021)

Solution

$\left|\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right|=192$

$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3} \;and\; \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$

$\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ {[x]} & {[x]+2} & {[x]+4}\end{array}\right]=192$

$2[x]+6+[x]=192 \Rightarrow[x]=62$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.