10-1.Circle and System of Circles
hard

Let $Z$ be the set of all integers,

$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+\mathrm{y}^{2} \leq 4\right\}$

$\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}: \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4\right\} \text { and }$

$\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2} \leq 4\right\}$

If the total number of relation from $\mathrm{A} \cap \mathrm{B}$ to $\mathrm{A} \cap \mathrm{C}$ is $2^{\mathrm{p}}$, then the value of $\mathrm{p}$ is :

A

$16$

B

$25$

C

$49$

D

$9$

(JEE MAIN-2021)

Solution

$(x-2)^{2}+y^{2} \leq 4$

$x^{2}+y^{2} \leq 4$

No. of points common in $\mathrm{C}_{1} \,\&\, \mathrm{C}_{2}$ is $5 .$

$(0,0),(1,0),(2,0),(1,1),(1,-1)$

Similarly in $\mathrm{C}_{2} \& \mathrm{C}_{3}$ is $5$

No. of relations $=2^{5 \times 5}=2^{25}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.