माना $[0,4 \pi]$ में समीकरण $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ के सभी हलों (रिडियन में) का योग $S$ है। तो $\frac{8 S }{\pi}$ बराबर है .......... |
$87$
$78$
$56$
$65$
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sin 2 x+\cos x=0$
यदि $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ तब $\theta = $
यदि $\sec 4\theta - \sec 2\theta = 2$, तो $\theta $ का व्यापक मान है
समीकरण $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ के हलों में से एक निम्नलिखित अन्तराल में है
समीकरण $4{\cos ^2}x + 6$${\sin ^2}x = 5$ का व्यापक हल है