3 and 4 .Determinants and Matrices
hard

माना $A =\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ एक $3 \times 3$ आव्यूह है। तो $3 \times 3$ आव्यूहों $B$, जिनकी प्रविष्टियाँ, समुच्चय, $\{1,2,3,4,5\}$ से हैं तथा जो $AB = BA$ को संतुष्ट करते है, की संख्या है

A

$3500$

B

$3125$

C

$4500$

D

$6000$

(JEE MAIN-2021)

Solution

Let matrix $B=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & n & i\end{array}\right]$

$\therefore A B=B A$

$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

$\left[\begin{array}{lll}d & e & f \\ a & b & c \\ g & h & i\end{array}\right]=\left[\begin{array}{lll}b & a & c \\ e & d & f \\ h & g & i\end{array}\right]$

$\Rightarrow d=b, e=a, f=c, g=h$

$\therefore$ Matrix $B=\left[\begin{array}{lll}a & b & c \\ b & a & c \\ g & g & i\end{array}\right]$

No. of ways of selecting $a, b, c, g$,

$\mathrm{i}=5 \times 5 \times 5 \times 5 \times 5$

$=5^{5}=3125$

$\therefore$ No. of Matrices $B=3125$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.