- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
यदि ${a_{ij}} = \frac{1}{2}(3i - 2j)$ और $A = {[{a_{ij}}]_{2 \times 2}}$, तो $A$ का मान होगा
A
$\left[ {\begin{array}{*{20}{c}}{1/2}&2\\{ - 1/2}&1\end{array}} \right]$
B
$\left[ {\begin{array}{*{20}{c}}{1/2}&{ - 1/2}\\2&1\end{array}} \right]$
C
$\left[ {\begin{array}{*{20}{c}}2&2\\{1/2}&{ - 1/2}\end{array}} \right]$
D
इनमें से कोई नहीं
Solution
(b) ${a_{ij}} = \frac{1}{2}(3i – 2j)$
==> ${a_{11}} = 1/2,\,\,\,{a_{12}} = – 1/2$ ${a_{21}} = 2,\,\,\,{a_{22}} = 1$$\therefore $
$\therefore $ $A = {[{a_{ij}}]_{2 \times 2}} = \left[ {\begin{array}{*{20}{c}}{{a_{{\rm{11}}}}}&{{a_{12}}}\\{{a_{{\rm{21}}}}}&{{a_{22}}}\end{array}} \right]$
$\therefore $ $A = \left[ {\begin{array}{*{20}{c}}{1/2}&{ – 1/2}\\2&1\end{array}} \right]$.
Standard 12
Mathematics