1.Relation and Function
normal

Let $f(x) = cos(\sqrt P \,x),$ where $P = [\lambda], ([.]$ is $G.I.F.)$ If the period of $f(x)$ is $\pi$. then

A

$\lambda \, \in [4, 5]$

B

$\lambda \, \in [1, 2)$

C

$\lambda \, \in [4, 5)$

D

$\lambda$ does not exist

Solution

$\frac{2 \pi}{\sqrt{\mathrm{p}}}=\pi$

$\sqrt{\mathrm{p}}=2$

$\mathrm{P}=4$

$[\lambda]=4$$\quad$ Given $\mathrm{p}=[\lambda]$

$\lambda \in[4.5)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.