1.Relation and Function
normal

माना $c , k \in R$ है। यदि $f ( x )=( c +1) x ^2+\left(1- c ^2\right)$ $x +2 k$ तथा $f ( x + y )= f ( x )+ f ( y )- xy , \forall x$, $y \in R$ है, तो $\mid 2(f(1)+f(2)+f(3)+$ $+ f (20)) \mid$ का मान है $..........$

A

$3365$

B

$3375$

C

$3385$

D

$3395$

(JEE MAIN-2022)

Solution

$f(x)=(c+1) x^{2}+\left(1-c^{2}\right) x+2 k$        $\dots(1)$

$f(x+y)=f(x)+f(y)-x y \quad \forall x y \in R$

$\lim \limits_{y \rightarrow 0} \frac{f(x+y)-f(x)}{y}=\lim \limits_{y \rightarrow 0} \frac{f(y)-x y}{y}\Rightarrow f^{\prime}(x)=f^{\prime}(0)-x$

$f(x)=-\frac{1}{2} x^{2}+f^{\prime}(0) \cdot x+\lambda \quad \text { but } f(0)=0 \Rightarrow \lambda=0$

$f(x)=-\frac{1}{2} x^{2}+\left(1-c^{2}\right) \cdot x$        $\dots(2)$

$\therefore \quad$ as $f ^{\prime}(0)=1- c ^{2}$

Comparing equation $(1)$ and $(2)$

We obtain, $c =-\frac{3}{2}$

$\therefore \quad f ( x )=-\frac{1}{2} x ^{2}-\frac{5}{4} x$

Now $\left|2 \sum \limits_{x=1}^{20} f(x)\right|=\sum \limits_{x=1}^{20} x^{2}+\frac{5}{2} \cdot \sum \limits_{x=1}^{20} x$

$=2870+525$

$=3395$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.