8. Sequences and Series
hard

Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f ( x )=\alpha x ^{5}+\beta x ^{3}+\gamma x , x \in R \quad$ and $\quad g : R \rightarrow R$ be such that $g(f(x))=x$ for all $x \in R$. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to.

A

$0$

B

$3$

C

$9$

D

$27$

(JEE MAIN-2022)

Solution

Consider a case when $\alpha=\beta=0$ then

$f(x)=y x$

$g(x)=\frac{x}{y}$

$\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right) \Rightarrow \frac{y}{n}\left(a_{1}+a_{2}+\ldots . .+a_{n}\right)$

$=0$

$f ( g (0)) \Rightarrow f (0)$

$0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.