माना $\alpha, \beta$ तथा $\gamma$ तीन धनात्मक वास्तविक संख्याएं हैं। माना $f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R$ तथा $g : R \rightarrow R$ इस प्रकार हैं कि सभी $x \in R$ के लिए $g ( f ( x ))= x$ है। यदि $a _1, a _2, a _3, \ldots, a _n$ एक संमातर श्रेढ़ी में है, जिनका माध्य शुन्य है, तो $f \left( g \left(\frac{1}{ n } \sum \limits_{ i =1}^{ n } f \left( a _{ i }\right)\right)\right)$ का मान बराबर है :
$0$
$3$
$9$
$27$
निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है
$a_{n}=4 n-3 ; a_{17}, a_{24}$
श्रेढ़ियों $4,9,14,19, \ldots \ldots, 25$ पदों तक तथा $3,6,9,12, \ldots \ldots ., 37$ पदों तक में उभयनिष्ठ पदों की संख्या है:
यदि $\tan \,n\theta = \tan m\theta $ हो, तो $\theta $ के विभिन्न मान होंगे
$x$ के किस मान के लिए ${\log _a}x + {\log _{\sqrt a }}x + {\log _{3\sqrt a }}x + ......... + {\log _{a\sqrt a }}x = \frac{{a + 1}}{2}$ होगा
$1$ से $100$ तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो $2$ या $5$ से विभाजित हों।