Let $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ and $ T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ Then $n ( S \cap T )$ is equal to $......$

  • [JEE MAIN 2022]
  • A

    $27$

  • B

    $26$

  • C

    $25$

  • D

    $24$

Similar Questions

If the chord through the point whose eccentric angles are $\theta \,\& \,\phi $ on the ellipse,$(x^2/a^2) + (y^2/b^2) = 1$  passes through the focus, then the value of $ (1 + e)$ $\tan(\theta /2) \tan(\phi /2)$ is

Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the tirst quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. I wo tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?

  • [IIT 2024]

In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is $10$ and one of the foci is at $(0, 5\sqrt 3 )$, then the length of its latus rectum is

  • [JEE MAIN 2019]

Let $P(2,2)$ be a point on an ellipse whose foci are $(5,2)$ and $(2,6)$, then eccentricity of ellipse is 

Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3,\,0),\,\, a=4$