અહી $p$ અને $p+2$ એ અવિભાજ્ય સંખ્યા છે અને $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ હોય તો $\alpha$ અને $\beta$ ની મહતમ કિમંતોનો સરવાળો મેળવો કે જેથી $p ^{\alpha}$ અને $( p +2)^{\beta}$ એ $\Delta$ ને વિભાજે .
$4$
$3$
$2$
$1$
જો $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, હોય,તો $\lambda$, $\frac{\lambda}{3}$ એ $.........$ સમીકરણના બીજ છે.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ ના બીજ મેળવો.
નિશ્ચાયકની કિમત મેળવો : $\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$
$\left| {\,\begin{array}{*{20}{c}}{a - 1}&a&{bc}\\{b - 1}&b&{ca}\\{c - 1}&c&{ab}\end{array}\,} \right| = $