જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, તો $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $
$k/6$
$2k$
$3k$
$6k$
જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.
જેના માટે સમીકરણ સંહતિ
$ x+y+z=4, $
$ 2 x+5 y+5 z=17, $
$ x+2 y+\mathrm{m} z=\mathrm{n}$
ને અસંખ્ય ઉકલો હોય, તેવી $m, n$ ની કિંમતો .......... સમીક૨ણ નું સમાધાન કરે છે.
જો $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ અને $a + b + c \ne 0$, તો $x$ મેળવો.
સમીકરણ સંહતિ ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ ના ઉકેલની સંખ્યા મેળવો.
જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત . . .