माना $p$ तथा $p +2$ अभाज्य संख्याएँ हैं तथा माना $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ है। तब $\alpha$ तथा $\beta$ के अधिकतम मानों, जिनके लिए $p ^\alpha$ तथा $( p +2)^\beta, \Delta$ को विभाजित करते हैं, का योग है $...........$

  • [JEE MAIN 2022]
  • A

    $4$

  • B

    $3$

  • C

    $2$

  • D

    $1$

Similar Questions

समीकरणों के निकाय $2x + y - z = 7,\,$ $x - 3y + 2z = 1$ तथा $x + 4y - 3z = 5$ के हलों की संख्या होगी   

यदि रैखीक समीकरण निकाय

$2 x+y+z=5$

$x-y+z=3$

$x+y+a z=b$ का कोई हल नहीं है, तो

  • [JEE MAIN 2021]

यदि $A \ne O$ और $B \ne O$,   $n × n $ कोटि के आव्यूह इस प्रकार हैं कि $AB = O,$ तो

यदि समीकरण निकाय

$x+y+z=6$

$2 x+5 y+\alpha z=\beta$

$x+2 y+3 z=14$

के अनन्त हल है. तो $\alpha+\beta$ बराबर है

  • [JEE MAIN 2022]

माना $\alpha$ तथा $\beta$ समीकरण $x ^{2}+ x +1=0$ के मूल हैं, तो $R$ में $y \neq 0$ के लिए $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ बराबर है:

  • [JEE MAIN 2019]