અહી $S=\{4,6,9\}$ અને $T=\{9,10,11, \ldots, 1000\}$ છે. જો $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in N, a_{1}, a_{2}, a_{3}, \ldots, a_{k} \in S\right\}$ હોય તો ગણ $T - A$ ના બધાજ ઘટકોનો સરવાળો મેળવો.
$10$
$9$
$11$
$12$
જો $X = \{ {8^n} - 7n - 1:n \in N\} $ અને $Y = \{ 49(n - 1):n \in N\} ,$ તો . . ..
અહી $a>0, a \neq 1$ હોય તો ગણ $S$ એ $b$ ની બધીજ ધન કિમંતો નો ગણ છે કે જે $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ નું સમાધાન કરે છે ગણ $S$ તો . . . .
$2n (A / B) = n (B / A)$ અને $5n (A \cap B) = n (A) + 3n (B) $, જ્યાં $P/Q = P \cap Q^C$ જો $n (A \cup B) \leq 10$ હોય તો $\frac{{n\ (A).n\ (B).n\ (A\ \cap\ B)}}{8}$ ની કિમત ...... થાય
ધારોકે $A=\{n \in[100,700] \cap N: n$ એ $3$ નો ગુણિત પણ નથી કે $4$ નો ગુણિત પણ નથી $\}$. તો $A$ ના ધટકોની સંખ્યા ........... છે.