1.Set Theory
medium

જો $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}, B=\{3 k+1 \mid k \in N\}$ અને $C=\{2 k \mid k \in N\}$ હોય તો ગણ $A \cap(B-C)$ ના બધાજ ઘટકોનો સરવાળો મેળવો.

A

$832$

B

$412$

C

$963$

D

$123$

(JEE MAIN-2021)

Solution

$\mathrm{B}-\mathrm{C} \equiv\{7,13,19, \ldots 97, \ldots\}$

Now, $n^{2}-n \leq 100 \times 100$

$\Rightarrow \mathrm{n}(\mathrm{n}-1) \leq 100 \times 100$

$\Rightarrow \mathrm{A}=\{1,2, \ldots, 100\}$

So, $A \cap(B-C)=\{7,13,19, \ldots, 97\}$

Hence, sum $=\frac{16}{2}(7+97)=832$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.