ધારોકે $A=\{n \in[100,700] \cap N: n$ એ $3$ નો ગુણિત પણ નથી કે $4$ નો ગુણિત પણ નથી $\}$. તો $A$ ના ધટકોની સંખ્યા ........... છે.
$300$
$280$
$310$
$290$
જો $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}, B=\{3 k+1 \mid k \in N\}$ અને $C=\{2 k \mid k \in N\}$ હોય તો ગણ $A \cap(B-C)$ ના બધાજ ઘટકોનો સરવાળો મેળવો.
$2n (A / B) = n (B / A)$ અને $5n (A \cap B) = n (A) + 3n (B) $, જ્યાં $P/Q = P \cap Q^C$ જો $n (A \cup B) \leq 10$ હોય તો $\frac{{n\ (A).n\ (B).n\ (A\ \cap\ B)}}{8}$ ની કિમત ...... થાય
બે ગણો ધ્યાનમાં લો:
$A=\{m \in R:$ : સમીકરણ $x^{2}-(m+1) x+m+4=0$ ના બંને બીજો વાસ્તવિક છે $\}$ અને $B=[-3,5)$
નીચેનામાંથી ક્યૂ સાચું છે ?
ગણ $\left\{n \in N : 10 \leq n \leq 100\right.$ અને $3^n-3$ એ $7$ નો ગુણિત છે $\}$ ના ઘટકોની સંખ્યા $.........$ છે.
ધારો કે $A=\{n \in N: H . C . F .(n, 45)=1\}$ અને ધારો કે $B=\{2 k: k \in\{1,2, \ldots, 100\}\}$.તો $A \cap B$ ના તમામ ઘટકોનો સરવાળો$\dots\dots\dots$