माना $S =\{4,6,9\}$ तथा $T =\{9,10,11, \ldots, 1000\}$ हैं। यदि $A =\left\{ a _1+ a _2+\ldots+ a _{ k }: k \in N , a _1, a _2\right.$, $\left.a_3, \ldots, a_k \in S\right\}$ है, तो समुच्चय $T-A$ में सभी अवयवों का योग है $..........।$
$10$
$9$
$11$
$12$
यदि $A =\{ x \in R : \quad| x \quad-2| > 1\}$, $B=\left\{x \in R : \sqrt{ x ^{2}-3} > 1\right\}, C =\{ x \in R :| x -4| \geq 2\}$ हैं तथा समी पूर्णाकों का समुच्चय $Z$ है, तो समुच्चय $( A \cap B \cap C )^{ C } \cap Z$ के उपसमुच्चयों की संख्या है
समुच्चय $\left\{\mathrm{n} \in \mathbb{N}: 10 \leq \mathrm{n} \leq 100\right.$ तथा $3^{\mathrm{n}}-3,7$ का एक गुणज है \} में अवयवों की संख्या है :
माना $U _{ i =1}^{50} X _{ i }= U _{ i =1}^{ n } Y _{ i }= T$ है, जहाँ प्रत्येक $X _{ i }$ में $10$ अवयव हैं तथा प्रत्येक $Y_{i}$ में $5$ अवयव में है। यदि $T$ का प्रत्येक अवयव ठीक $20, X _{ i }$ समुच्चयों का एक अवयव है तथा ठीक $6, Y _{ i }$ समुच्चयों का एक अवयव है, तो $n$ का मान है
माना $S={1,2,3, \ldots \ldots, n}$ और $A={(a, b) \mid 1 \leq a, b \leq n}=S \times S$ है। यदि $A$ का एक उपसमुच्चय $B$ तब एक अच्छा उपसमुच्चय कहलाता है जब हर $x \in S$ के लिए $(x, x) \in B$ हो। तो, $A$ के अच्छे उपसमुच्चयों की संख्या कितनी है?
माना समुच्चय $\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}^2-2^{\mathrm{y}}=2023, \mathrm{x}, \mathrm{y} \in \mathbb{N}\right\}$ है। तो $\sum_{(x, y) \in C}(x+y)$ बराबर है ............