Let $R$ be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^8 x+\cos ^4 x+\cos ^2 x+1\right)$ $x \in R$. Let  $S=\{\lambda \in R$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$ Then,

  • [KVPY 2020]
  • A

    $S=R$

  • B

    $S=\{0\}$

  • C

    $S=[0,2 \pi]$

  • D

    $S$ is a finite set having more than one element

Similar Questions

The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is

  • [JEE MAIN 2019]

Let $f(x)=\frac{x-1}{x+1}, x \in R-\{0,-1,1)$. If $f^{a+1}(x)=f\left(f^{n}(x)\right)$ for all $n \in N$, then $f^{\prime}(6)+f(7)$ is equal to

  • [JEE MAIN 2022]

Let $[x]$ denote the greatest integer $\leq x$, where $x \in R$. If the domain of the real valued function $\mathrm{f}(\mathrm{x})=\sqrt{\frac{[\mathrm{x}] \mid-2}{\sqrt{[\mathrm{x}] \mid-3}}}$ is $(-\infty, \mathrm{a}) \cup[\mathrm{b}, \mathrm{c}) \cup[4, \infty), \mathrm{a}\,<\,\mathrm{b}\,<\,\mathrm{c}$, then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is:

  • [JEE MAIN 2021]

Let $R$ be the set of real numbers and $f: R \rightarrow R$ be defined by $f(x)=\frac{\{x\}}{1+[x]^2}$, where $[x]$ is the greatest integer less than or equal to $x$, and $\left\{x{\}}=x-[x]\right.$. Which of the following statements are true?

$I.$ The range of $f$ is a closed interval.

$II.$ $f$ is continuous on $R$.

$III.$ $f$ is one-one on $R$

  • [KVPY 2017]

Let $f(x ) = x^3 - 2x + 2$. If real numbers $a$, $b$ and $c$ such that $\left| {f\left( a \right)} \right| + \left| {f\left( b \right)} \right| + \left| {f\left( c \right)} \right| = 0$ then the value of ${f^2}\left( {{a^2} + \frac{2}{a}} \right) + {f^2}\left( {{b^2} + \frac{2}{b}} \right) - {f^2}\left( {{c^2} + \frac{2}{c}} \right)$ equal to