Let $f(x)$ be a quadratic polynomial such that $f(-2)$ $+f(3)=0$. If one of the roots of $f(x)=0$ is $-1$, then the sum of the roots of $f(x)=0$ is equal to

  • [JEE MAIN 2022]
  • A

    $\frac{11}{3}$

  • B

    $\frac{7}{3}$

  • C

    $\frac{13}{3}$

  • D

    $\frac{14}{3}$

Similar Questions

Show that none of the operations given above has identity.

Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of al prime factors of $2310$ and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the range of $f$ is :

  • [JEE MAIN 2024]

Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.

The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is

Suppose $\quad f : R \rightarrow(0, \infty)$ be a differentiable function such that $5 f ( x + y )= f ( x ) \cdot f ( y ), \forall x , y \in R$. If $f(3)=320$, then $\sum \limits_{n=0}^5 f(n)$ is equal to :

  • [JEE MAIN 2023]