If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is
$( - 1,\;1)$
$\left[ { - \frac{1}{2},\;\frac{1}{2}} \right]$
$\left[ { - 1,\;\frac{1}{2}} \right]$
$\left[ { - \frac{1}{2},\; - 1} \right]$
If the graph of non-constant function is symmetric about the point $(3,4)$ , then the value of $\sum\limits_{r = 0}^6 {f(r) + f(3)} $ is equal to
Consider the function $\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ defined by $f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$. Consider the statements
$(I)$ The curve $y=f(x)$ intersects the $x$-axis exactly at one point
$(II)$ The curve $y=f(x)$ intersects the $x$-axis at $\mathrm{x}=\cos \frac{\pi}{12}$
Then
Domain of the function $f(x) =$ $\frac{1}{{\sqrt {\ln \,{{\cot }^{ - 1}}x} }}$ is
The domain of ${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ is
If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ then