Gujarati
Basic of Logarithms
hard

Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$  Then, the possible value(s) of $\frac{x}{y}$

A

is $1$ only

B

are $1$ and $4$

C

is $4$ only

D

is $8$ only

(KVPY-2020)

Solution

(c)

Given, $\log (x-2 y)^2=\log x y$

$x^2+4 y^2-4 x y =x y$

$x^2+4 y^2-5 x y =0$

$\left(\frac{x}{y}\right)^2-5\left(\frac{x}{y}\right)+4 =0$

$\left(\frac{x}{y}-1\right)\left(\frac{x}{y}-4\right) =0 \Rightarrow \frac{x}{y}=1 \text { or } 4$

But if $\frac{x}{y}=1$ then, $x-2 y< 0$

Hence, only $\frac{x}{y}=4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.