- Home
- Standard 11
- Mathematics
Basic of Logarithms
hard
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$
A
is $1$ only
B
are $1$ and $4$
C
is $4$ only
D
is $8$ only
(KVPY-2020)
Solution
(c)
Given, $\log (x-2 y)^2=\log x y$
$x^2+4 y^2-4 x y =x y$
$x^2+4 y^2-5 x y =0$
$\left(\frac{x}{y}\right)^2-5\left(\frac{x}{y}\right)+4 =0$
$\left(\frac{x}{y}-1\right)\left(\frac{x}{y}-4\right) =0 \Rightarrow \frac{x}{y}=1 \text { or } 4$
But if $\frac{x}{y}=1$ then, $x-2 y< 0$
Hence, only $\frac{x}{y}=4$
Standard 11
Mathematics