The value of ${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9$ is
$1$
$2$
$3$
$4$
For $y = {\log _a}x$ to be defined $'a'$ must be
Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is
If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is
If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to
$\log ab - \log |b| = $