Find the equation for the ellipse that satisfies the given conditions: Major axis on the $x-$ axis and passes through the points $(4,\,3)$ and $(6,\,2)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since the major axis is on the $x-$ axis, the equation of the ellipse will be of the form

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$           .......... $(1)$

Where, a is the semi-major axis

The ellipse passes through points $(4,\,3)$ and $(6,\,2)$ . Hence,

$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$          .......... $(2)$

$\frac{36}{a^{2}}+\frac{4}{b^{2}}=1$          .......... $(3)$

On solving equations $(2)$ and $(3),$ we obtain $a^{2}=52$ and $b^{2}=13$

Thus, the equation of the ellipse is $\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$ or $x^{2}+4 y^{2}=52$

Similar Questions

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x ^{2}+9 y ^{2}=36$

Eccentricity of the ellipse $9{x^2} + 25{y^2} = 225$ is

How many real tangents can be drawn to the ellipse $5x^2 + 9y^2 = 32$ from the point $(2,3)$

The locus of the point of intersection of perpendicular tangents to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is

For some $\theta \in\left(0, \frac{\pi}{2}\right),$ if the eccentricity of the hyperbola, $x^{2}-y^{2} \sec ^{2} \theta=10$ is $\sqrt{5}$ times the eccentricity of the ellipse, $x^{2} \sec ^{2} \theta+y^{2}=5,$ then the length of the latus rectum of the ellipse is

  • [JEE MAIN 2020]