- Home
- Standard 11
- Mathematics
1.Set Theory
normal
Let $a>0, a \neq 1$. Then, the set $S$ of all positive real numbers $b$ satisfying $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ is
A
an empty set
B
a singleton set
C
a finite set containing more than one element
D
$(0, \infty)$
(KVPY-2019)
Solution
(a)
Given relation
$\left(1+a^2\right)\left(1+b^2\right)=4 a b$
$\Rightarrow a^2+b^2-2 a b=2 a b-1-a^2 b^2$
$\Rightarrow \quad (a-b)^2=-(1-a b)^2$
$\because a > 0, a \neq 1 \text { and } b \text { is a positive real number}$
$\therefore(a-b)^2 \neq 0 \neq-(1-a b)^2, \text { because }(a-b)^2$
$\text { and }(1-a b)^2 \text { are non-negative real numbers}$
Standard 11
Mathematics
Similar Questions
hard