- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
Let $f(x)=x^6-2 x^3+x^3+x^2-x-1$ and $g(x)=x^4-x^3-x^2-1$ be two polynomials. Let $a, b, c$ and $d$ be the roots of $g(x)=0$. Then, the value of $f(a)+f(b)+f(c)+f(d)$ is
A
$-5$
B
$0$
C
$4$
D
$5$
(KVPY-2019)
Solution
(b)
Given,
$f(x)=x^6-2 x^5+x^3+x^2-x-1$
$=x^2\left(x^4-x^3-x^2-1\right)$
$-x\left(x^4-x^3-x^2-1\right)+2 x^2-2 x-1$
$\Rightarrow f(x)=\left(x^2-x\right) g(x)+2 x^2-2 x-1$
$\therefore f(a)=2 a^2-2 a-1$
$\therefore \Sigma f(a)=f(a)+f(b)+(c)+f(d)$
$=2 \Sigma a^2-2 \Sigma a-\Sigma 1$
$=2\left((\Sigma a)^2-2 \Sigma a b\right)-2 \Sigma a-4$
$\because a, b, c, d$ are roots of equation
$g(x)=x^4-x^3-x^2-1=0$
then $\Sigma a=1, \Sigma a b=-1$
$\therefore \Sigma f(a)=2\left[(1)^2-2(-1)\right]-2(1)-4$
$=6-2-4=0$
Standard 12
Mathematics