1.Relation and Function
normal

Let $f(x)=x^6-2 x^3+x^3+x^2-x-1$ and $g(x)=x^4-x^3-x^2-1$ be two polynomials. Let $a, b, c$ and $d$ be the roots of $g(x)=0$. Then, the value of $f(a)+f(b)+f(c)+f(d)$ is

A

$-5$

B

$0$

C

$4$

D

$5$

(KVPY-2019)

Solution

(b)

Given,

$f(x)=x^6-2 x^5+x^3+x^2-x-1$

$=x^2\left(x^4-x^3-x^2-1\right)$

$-x\left(x^4-x^3-x^2-1\right)+2 x^2-2 x-1$

$\Rightarrow f(x)=\left(x^2-x\right) g(x)+2 x^2-2 x-1$

$\therefore f(a)=2 a^2-2 a-1$

$\therefore \Sigma f(a)=f(a)+f(b)+(c)+f(d)$

$=2 \Sigma a^2-2 \Sigma a-\Sigma 1$

$=2\left((\Sigma a)^2-2 \Sigma a b\right)-2 \Sigma a-4$

$\because a, b, c, d$ are roots of equation

$g(x)=x^4-x^3-x^2-1=0$

then $\Sigma a=1, \Sigma a b=-1$

$\therefore \Sigma f(a)=2\left[(1)^2-2(-1)\right]-2(1)-4$

$=6-2-4=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.