Show that the function $f: N \rightarrow N ,$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2,$ is onto but not one-one.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f$ is not one-one, as $f(1)=f(2)=1 .$ But $f$ is onto, as given any $y \in N ,\, y \neq 1$ we can choose $x$ as $y+1$ such that $f(y+1)$ $=y+1-1=y .$ Also for $1 \in N$, we have $f(1)=1$.

864-s39

Similar Questions

If $f(x)$ is a function satisfying $f(x + y) = f(x)f(y)$ for all $x,\;y \in N$ such that $f(1) = 3$ and $\sum\limits_{x = 1}^n {f(x) = 120} $. Then the value of $n$ is

  • [IIT 1992]

The maximum value of function $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ is

A real valued function $f(x)$ satisfies the function equation $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ where a is a given constant and $f(0) = 1$, $f(2a - x)$ is equal to

  • [AIEEE 2005]

Let $A=\{1,3,7,9,11\}$ and $B=\{2,4,5,7,8,10,12\}$. Then the total number of one-one maps $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(1)+\mathrm{f}(3)=14$, is :

  • [JEE MAIN 2024]

Let $f : R -\{0,1\} \rightarrow R$ be a function such that $f(x)+f\left(\frac{1}{1-x}\right)=1+x$. Then $f(2)$ is equal to :

  • [JEE MAIN 2023]