1.Relation and Function
normal

If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right) = \frac{{5f(x) - 3f(y)}}{2}\forall x,y\, \in \,R$ and $f(0)=1, f'(0)=2$ then the period of $sin(f(x))$ is 

A

$2\pi $

B

$\pi $

C

$3\pi $

D

$4\pi $

Solution

Give equation can be written as

$f\left(\frac{5 x-3 y}{2}\right)=\frac{5 f(x)-3 f(y)}{5-3}$

Which satisfies section formula for abscissa on $LHS$ and ordinate on $RHS$

hence $f(x)$ must be linear function

Let $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$

$\therefore f(0)=b=1$

and $f^{\prime}(0)=a=2$

$\Rightarrow f(x)=2 x+1$

$\therefore$ period of $\sin (2 x+1)$ is $\pi$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.