If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right) = \frac{{5f(x) - 3f(y)}}{2}\forall x,y\, \in \,R$ and $f(0)=1, f'(0)=2$ then the period of $sin(f(x))$ is
$2\pi $
$\pi $
$3\pi $
$4\pi $
Let $R _{1}$ and $R _{2}$ be two relations defined as follows :
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ and $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$
where $Q$ is the set of all rational numbers. Then
If in greatest integer function, the domain is a set of real numbers, then range will be set of
If $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, then $(f + g)\left( {\frac{\pi }{3}} \right) = $
The graph of $y = f(x)$ is shown then number of solutions of the equation $f(f(x)) =2$ is
Let $f(x)=\frac{x+1}{x-1}$ for all $x \neq 1$. Let $f^1(x)=f(x), f^2(x)=f(f(x))$ and generally $f^n(x)=f\left(f^{n-1}(x)\right)$ for $n>1$. Let $P=f^1(2) f^2(3) f^3(4) f^4(5)$ Which of the following is a multiple of $P$ ?