मान लें कि $f(x)=x^6-2 x^5+x^3+x^2-x-1$ एवं $g(x)=x^4-x^3-x^2-1$ दो बहुपद है। मान लीजिए कि $g(x)=0$ के मूल $a, b, c$, एवं $d$ है, तब $f(a)+f(b)+f(c)+$ $f(d)$ का मान क्या है ?

  • [KVPY 2019]
  • A

    $-5$

  • B

    $0$

  • C

    $4$

  • D

    $5$

Similar Questions

माना $f : R \rightarrow R$,$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1$ द्वारा परिभाषित है। तो $\sum_{ k =1}^{20} \frac{1}{\sin ( k ) \sin ( k + f ( k ))}$ बराबर है

  • [JEE MAIN 2021]

माना एक अवकलनीय फलन $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ के लिए $5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R$ है। यदि $\mathrm{f}(3)=320$, तो $\sum_{\mathrm{n}=0}^5 \mathrm{f}(\mathrm{n})$ बराबर है :

  • [JEE MAIN 2023]

फलन ${\sin ^{ - 1}}\sqrt x $ निम्न अंतराल में परिभाषित है

यदि फलन $\mathrm{f}(\mathrm{x})=\sec ^{-1}\left(\frac{2 \mathrm{x}}{5 \mathrm{x}+3}\right)$ का प्रांत $[\alpha, \beta) \cup(\gamma, \delta]$ है, तो $|3 \alpha+10(\beta+\gamma)+21 \delta|$ बराबर है_________|

  • [JEE MAIN 2023]

मान लें $f(x)$ एक चर बहुपद इस प्रकार है कि $f\left(\frac{1}{2}\right)=100$ तथा $f(x) \leq 100$ प्रत्येक वास्तविक $x$ के लिए है। निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य नहीं है?

  • [KVPY 2013]