Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then
$S=\emptyset$
$S$ is a non-empty finite set
$S$ is an infinite proper subset of $R-\{0\}$
$S=R-\{0\}$
If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is
If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then
Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$
The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is
Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$