Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]
  • A

    $S=\emptyset$

  • B

    $S$ is a non-empty finite set

  • C

    $S$ is an infinite proper subset of $R-\{0\}$

  • D

    $S=R-\{0\}$

Similar Questions

If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is

If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then

Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$

The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$