- Home
- Standard 11
- Mathematics
Trigonometrical Equations
hard
Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then
A
$S=\emptyset$
B
$S$ is a non-empty finite set
C
$S$ is an infinite proper subset of $R-\{0\}$
D
$S=R-\{0\}$
(KVPY-2018)
Solution
(d)
We have,
$S=\{x \in R: \cos x+\cos \sqrt{2} x<2\}$
Maximum value of $\cos x$ and $\cos \sqrt{2} x$ is 1 at
$x=0$
$\therefore \quad \cos x+\cos \sqrt{2} x=2 \text { at } x=0$
$\text { Hence, } \quad S=R-\{0\}$
Standard 11
Mathematics