Let $P = \left\{ {\theta :\sin \,\theta - \cos \,\theta = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta + \cos \,\theta = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then
$P \subset Q$ and $Q - P \ne \phi $
$Q \not\subset P$
$P = Q$
$P \not\subset Q$
$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $
All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in
The general value of $\theta $satisfying the equation $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ is
If $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0 \le x \le {180^o}$, then $x =$
If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are